

Digital Assessment Tools in Higher Education: Validity, Academic Integrity and Implementation Barriers

Kunwar Abhinav Singh Rathore^{1*}, Supriya Gupta¹, Rohit Kumar Srivastava¹, Sanjeev Vishwakarma¹, Vishal Deep¹

¹Faculty of Nursing & Paramedical, Mahayogi Gorakhnath University

***Corresponding Author E-mail:** abhinavsinghrathore527261@gmail.com

Abstract

Digital evaluation technologies are changing higher education, especially programs in the animal-science, by offering remote, adaptable, and socially responsible alternatives to the conventional practical assessments. The use of virtual dissections, AI-aided scoring, digital pathology slides, and simulation exercises aid in improving theoretical knowledge and practicing competencies and follow the 3Rs principle; Replacement, Reduction, and Refinement, which lessens the use of live animals or cadavers. There is a high level of construct and content validity, assessment reliability, real-time feedback, and possibility of practice repeatedly. Nevertheless, issues such as lack of sensory-motor skill evaluation, technological barriers, student disciplinary problems, administrative willingness, and inequitable access still exist. The critical factors in maximizing effectiveness, equity and sustainability are strategic implementation, faculty training, hybrid models and inclusive approaches. The tools can carry a lot of potential in standardizing assessment, ethical education, continuity in the present higher education environment.

Keywords: Digital Assessment, Animal-Science Education, Virtual Simulation, AI-Assisted Scoring, Ethical Evaluation, 3Rs Principles, Academic Integrity, Implementation Barriers

Received: Sep. 28, 2025

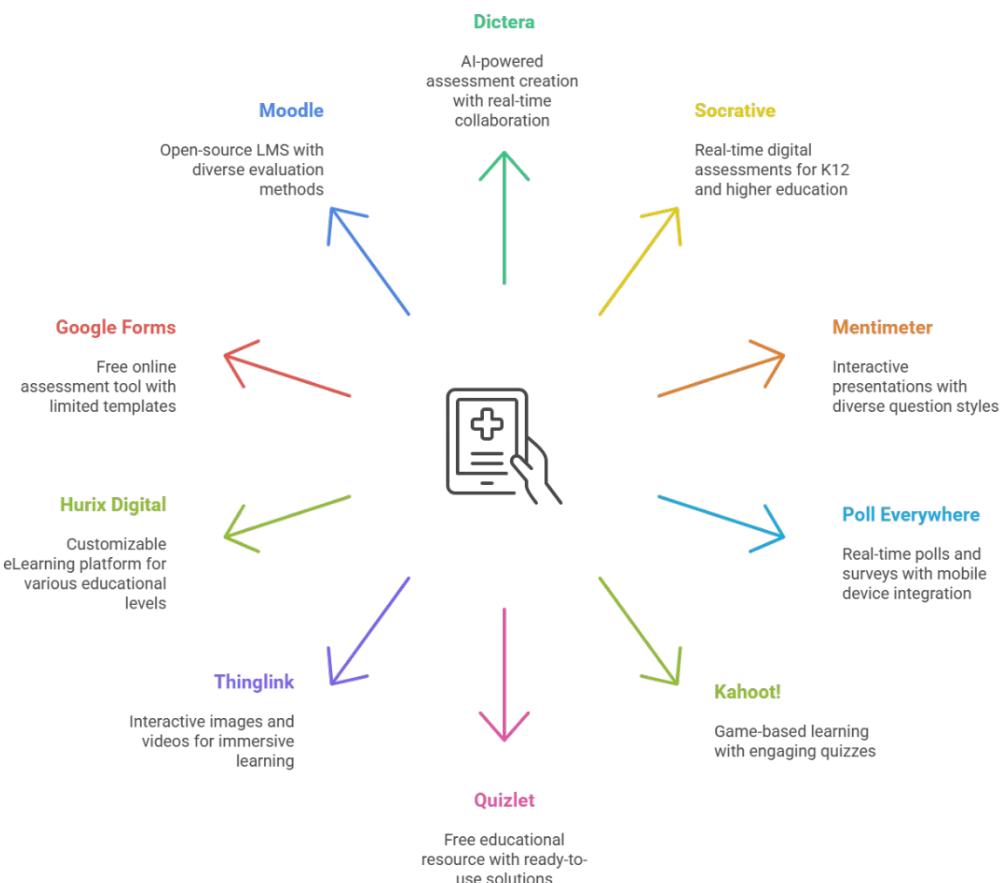
Revised: Oct. 30, 2025

Accepted: Nov. 29, 2025

Published: Dec 16, 2025

DOI: <https://doi.org/10.64474/3107-6351.Vol1.Issue3.1>

© SSJIELS All Rights Reserved


<https://ssjiels.nknpub.com/1/issue/archive>

1. INTRODUCTION

Digital assessment tools are becoming highly changing our higher education as they offer new, technologically driven approaches to assessing student learning. Compared to a conventional test that might still depend on the use of a written test, a practical in person, or using animals in the field of veterinary and life science research work, a digital test adds the advantage of scalability, versatility and can be more ethically appropriate. Such tools include virtual

simulations, interactive 3D models, AI-facilitated grading tools, and practical examinations using computers and these tools enable a teacher to assess both theoretical and practical skills with great accuracy¹. The increased attention to the use of the digital platform through the development of computational technologies, cloud-based infrastructure, and the need to study remotely has been stimulated by disruptions on the global scale like the COVID-19 pandemic. Consequently, institutions are turning to digital assessment in order to guarantee continuity, standardization and access of higher education programs².

Figure 1: Digital Assessment Tools³

Digital assessments have an extra meaning in animal-science education, which receives particular importance thanks to ethical issues concerning animal welfare. Practical assessments of this type include cadaver dissection, work with live animals, or invasive tests, which may be expensive, logically demanding, and have ethical issues. Digital assessment programs are an alternative means that serve a humane goal because they comply with all the aspects of the 3Rs: Replacement, Reduction, and Refinement, and students can develop the needed skills and knowledge without negatively affecting animal welfare. Additionally, it is possible to perform repetition, instant result, and objective rating with the help of these tools, each of which helps to obtain more credible and fair results of assessment⁴. Although these benefits exist, the usage of digital assessment is not devoid of obstacles, such as the technological constraints, the

willingness of the faculty, the academic integrity issues, and the costs of the infrastructure, which serve to draw attention to its successful and prudent implementation.

1.1 Background Information and Context

The electronic evaluation tools are a breakthrough in the approach to strategy of assessment in the higher education field by balancing the conventional teaching approach with the current technology. These tools offer interactive platforms in other subjects like veterinary science, zoology, and life sciences among others, which mimic real-life situations and thus the students learn how to think critically, analytically and practically without involvement of real animals. They are used in virtual dissections, behavior analysis with AI-assisted scoring, computer based OSPEs (Objective Structured Practical Examinations) and cloud-based laboratory simulation⁵. The intensive development of digital tools has been predetermined by both technological changes and necessities to preserve academic standards in more diversified and distributed learning conditions. This setting points to the two-fold nature of digital assessment: it addresses this issues of quality in education and takes care of ethical and logistical concern when it comes to the traditional modes of assessment.

1.2 Objectives of the Review

The main goals of the review are to discuss the validity, the reliability and the effectiveness of digital assessment tools within the higher education with special attention paid to animal-based programs:

- To assess the validity and reliability of digital assessment tools in animal-science education.
- To evaluate their effectiveness in measuring theoretical knowledge and practical skills.
- To examine ethical implications and adherence to the 3Rs (Replacement, Reduction, Refinement).
- To identify implementation barriers, including technology, training, and integrity issues.
- To explore strategies to improve accessibility, equity, and scalability of digital assessments.

1.3 Importance of the Topic

Digital assessment as a topic in the context of higher education is of critical importance with a possibility of revolutionizing teaching, learning, and assessment practices. Traditional evaluation is becoming unsustainable in animal-science programs due to ethical issues, scarcity of resources, and logistical issues. Computer technologies present a chance to snap out of these shortcomings, and have a fair and standardized alternative, as well as an ethical one. Additionally, as more people tend to adopt offline and online learning platforms, learning about the validity and integrity and implementation issues on digital assessment is necessary to

stakeholders to deliver quality education, uphold academic standards, and equip the students with skills necessary to practice professionally. In this review, both practical and ethical demands of the inclusion of digital assessment in the current structures of higher education are discussed⁶.

2. EFFECTIVENESS, METHODOLOGIES, AND EVALUATION OF DIGITAL ASSESSMENT TOOLS IN ANIMAL-SCIENCE EDUCATION

Evidence in veterinary, zoological, and animal-science courses, in general, suggests that digital assessment systems, such as virtual dissection simulations, computer-based OSPEs, and AI-based scoring systems, are appropriate in improving the theoretical and practical skills assessment and in many cases correlate well with or even improve the results of traditional assessment techniques⁷. Approaches such as comparative validity, pair validation, pilot testing and inter-rater reliability studies indicate that they minimise bias in scoring, standardisation of assessment and animal studies have multiple practice opportunities without affecting animal welfare, which is a consideration of ethical standards such as the 3Rs. Immediate feedback, practising skills repeatedly, and dependence on fewer live animals are some of the key strengths whereas the drawbacks entail the limited assessment on sensory-motor abilities, technical difficulties, resource limited access in areas of limited resources and possible academic dishonesty issues in long-distance assessments⁸.

2.1 Summary of Key Research Studies

Research work is being done in the area of veterinary, zoological and extends throughout life-science curriculum whereby digital-based tests are becoming more utilized and proven to increase levels of theoretical and practical skill testing. A body of literature on Virtual Dissection Platforms such as 3D animal models of anatomy, augmented reality animal dissections, high fidelity animal, species specific anatomy simulators have shown high construct validity with strong correspondence of the simulator to traditional cadaver based teaching. According to these studies, students are able to develop similar (and in some instances better) anatomical understanding without having to use animal specimen to high degree⁹.

On the same note, the application of improved computer-based OSPEs (Objective Structured Practical Examinations) in veterinary pathology, parasitology, and histology through the use of digital slides, interactive case simulations and image diagnostic dynamic tools have been confirmed as strong and acceptable diagnostic accuracy assessment tools¹⁰. Moreover, scoring systems with the use of AI have greatly enhanced the accuracy of measurements in fields like detection of gait abnormalities, wildlife behavior, and analysis of livestock management they are observing. Not only do these AI-driven platforms make objective assessments, these platforms allow people to identify subtle performance indicators that can easily be overlooked in manual scoring thus proving the moderate-high reliability of the platforms regarding a series of experimental and field-based tests¹¹.

2.2 Methodologies and Findings

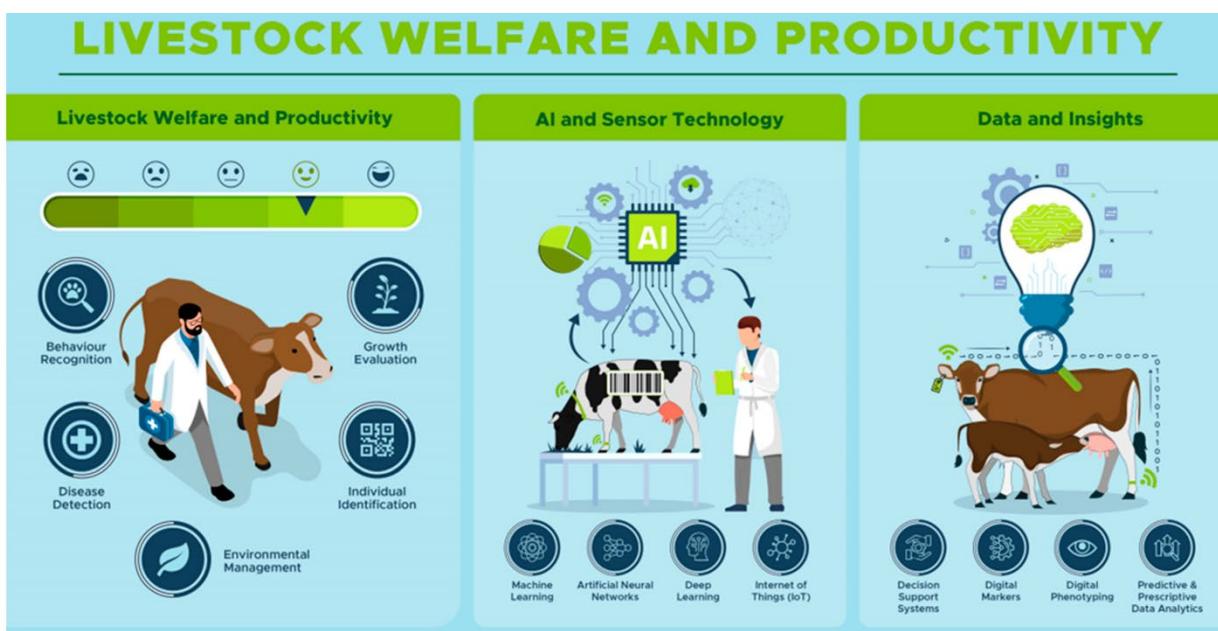
In the literature reviewed, variable sizes of methodological approaches have been used to measure the impact of digital assessment of animal-science education. The simplest is the comparative validity testing which entails the digital assessment scores and the outcomes of the traditional, practical exams that can be conducted with hands on, and thus, the outcomes are compared to ascertain if it aligns to the traditional exams and reliability. Other researchers employ expert validation panels, typically of veterinary clinicians, zoologists, anatomists, and animal-behavior experts in ensuring that digital tests represent key learning outcomes and practical skills¹².

Pilot tests, repeated-measures designs and inter-rater consistency tests are also used as many studies in order to provide measurements of consistency and reproducibility. The results all point to the fact that digital tests greatly decrease the bias of human scoring and decrease the inter-rater variance as well as assist with evaluating large cohorts in a standardized manner. Besides, these tests give the students many chances to train and test without having to infringe animal rights, which is in line with ethics like the 3Rs. Closely monitored remote proctoring (with webcam profiling, content tracking and AI-based flagging) has been shown to be moderately successful on keeping academic integrity when testing online animal-science exams¹³.

2.3 Critical Evaluation of Strengths and Weaknesses

- Strengths**

A number of strengths of integrating digital assessment tools in animal-based higher education are worth mentioning as they not only improve the outcome of learning but also the ethical standards of higher education. Among the greatest benefits, one can point to the decrease in the use of living animals and cadavers, which will justify the use of humane methods of educating people and encourage them to adhere to the principles of the 3Rs, i.e., Replacement, Reduction and Refinement¹⁴. Virtual-dissections, digital-pathology slides and simulation-based-behavioral-tests all offer that instant feedback to students, making them better comprehend a topic and thus learn in real-time. These tools, too, can facilitate repetitive training in critical skills, such as identifying species, finding lesions, and scoring behaviour without subjecting animals to any kind of harm or using expensive biological specimens.


- Weaknesses**

Even after these benefits, digital assessment tools have a number of limitations which are critically important within animal-science teaching. Their limitation to assess the sensory-motor skills i.e. animal handling, restraint styles or occurrence of surgical skills, skills that demand tactile feel and interactivity with animals is the most salient weakness¹⁵. Re-assessment and performance can be impaired by technical difficulties, such as software lag, slower-than-normal rendering times and unexpected system crashes. Most institutions and especially those with limited resources or in rural areas have significant obstacles that are associated with hardware availability and constant internet connectivity and access to complex digital platforms. The other important issue is to secure academic integrity in remote digital tests

because possible proctoring systems might not be able to exclude external assistance and cheating entirely¹⁶.

3. EVALUATION, INTEGRITY, AND IMPLEMENTATION OF DIGITAL ASSESSMENT TOOLS IN ANIMAL-SCIENCE EDUCATION

Virtual dissections, digital pathology slides, and simulative exercises in the animal-science education, which are digital assessment tools, are highly valid and reliable. Construct validity research indicates that these instruments effectively provide an actual measurement of the anatomical knowledge, disease recognition, and decision-making abilities and expert tests indicate that the measures are also appropriate in assessing clinical judgment and specific expertise¹⁷. Standardized digital image banks and AI-aided scoring help to increase reliability due to decreased human variability and to provide consistent grading of cohorts, and prevents repeated practice without animal mistreatment.

Figure 2: Digital Assessment Tools in Animal-Science Education¹⁸

Although there are these benefits, digital assessments have significant hurdles regarding their implementation. Proctoring remotely along with video submissions can be susceptible to student fraud and involves strong authentication and hybrid ethics to be ethical. Limitations in technology, lack of training in the relevant faculty, change resistance, and high cost on the expensive simulation software and infrastructure further limit adoption, particularly in resource challenged institutions. It is vital to consider these obstacles to make integration of digital assessment tools effectively and ethically and make it a scalable part of animal-science curricula¹⁹.

3.1 Validity of Digital Assessment Tools

- **Construct Validity:** Various digital assessment technologies like online dissections, online pathology, and animal-handling exercises that are simulated have been strictly tested using traditional, non-digital approaches. It has been shown that these tools are reliable in assessing the anatomical knowledge of students, their ability to recognize diseases, and to make a decision, which in many cases are similar in performance measures made in cadavers or live animals. These platforms enable learners to repeat manipulation of complex structures of the human body and clinical situations with species-specific models, which are interactive and promote better learning without causing harm to animals²⁰.
- **Content Validity:** Scientific boards of veterinary practitioners, zoologists, and animal-behavior scientists have always reported that on-line tests are valid in measuring important animal-science education competencies. These encompass among others; clinical reasoning, species specific knowledge, diagnostic interpretation and the capacity to apply theoretical knowledge into practical settings. Digital examinations could be created with a broad scope of practical situations, and such data should be assessed according to the objectives of learning and professional requirements in a program of veterinary and life-science education²¹.
- **Reliability:** The use of AI-assisted scoring systems and standardized digital image banks has ensured better reliability in the assessment because they lessen the human variation. These instruments improve inter-rater as well as intra-rater consistency, which offer reproducible results of evaluation in different cohorts as well as in different institutions. Digital platforms can provide educators with a consistent quality of the assessment that may be applied to large-scale tests, as well as provide students with multiple attempts to demonstrate their competence through objective metrics of performance in a controlled and ethical setting through automation of scoring.

3.2 Academic Integrity in Digital Assessments

- **Remote Proctoring Technologies:** Introduction of remote-proctoring solutions, such as webcam surveillance, screen trackers and artificial intelligence-based abnormality detectors, has served to preserve academic integrity in online exams in animal-science courses. Nevertheless, practical tests based on images or simulations are still under the risk of illegal assistance and, therefore, it is essential to implement improved monitoring guidelines and safe test plan arrangements according to the practical learning of the skills²².
- **Misconduct in Practical Evaluations:** Digital delivery of video based assignments, including animal behavioral studies or livestock tracking, creates a risk of manipulation by use of edited video or by outsourcing. To guarantee that such assessments are real, more rigorous authentication techniques should be utilized such as time-stamped recordings, random assignment of tasks as well as safe submission portals. The strategies will assist in sustaining credibility of digital assessments without prejudice of moral integrity of animal-based education.

- **Ethical Framework:** Colleges are moving toward hybrid systems of integrity that blend antique codes of honor and the latest technological systems. The presence of secure browsers, controlled digital laboratory sessions, verification procedures allow the responsible behavior within the digital environment, as well as promote honesty in the examination process and responsible utilization of digital technologies in the real learning contexts among the students²³.

3.3 Implementation Barriers

- **Technological Limitations:** In most animal-science programs, especially in resource (real) limited environments, there is the issue of inadequate hardware to support advanced simulations, high-resolution digital microscopy, and interactive software platforms. These technological constraints may limit the use and usefulness of the digital assessment tools especially in poorly funded or rural institutions.
- **Faculty Training Gaps:** The successful implementation of digital assessments requires faculty knowledge on digital pedagogy. Most educators in veterinary and zoology programs do not have the necessary training to run more complex digital platforms, design online practical assignments, or interpret artificial intelligence-produced scores, which may be counterproductive to the implementation process and limit the educational value of these tools.
- **Resistance to Change:** There is a tendency towards digital assessment to display resistance by some faculty and students who insist on touching things and handling animals. This resistance can be caused by the distrust in the possibility of simulations appropriately simulating tasks of animal-handling in the real world or the fear of missing out on necessary sensory-motor training²⁴.
- **Cost and Infrastructure:** Simulation software, virtual anatomy websites, cloud-based OSPE, and AIsource graders are costly to purchase and maintain and demand extensive institutional support. Creating and sustaining these online resources can be a significant impediment to institutions, and this is an issue that requires planning and resource allocation to make such a sustainable challenge into the animal-science curriculum²⁵.

4. ETHICAL CONSIDERATIONS IN DIGITAL ASSESSMENT FOR ANIMAL-BASED HIGHER EDUCATION

Digital assessment tools, when incorporated in the animal-based higher education, have considerable ethical advantages, chiefly a reduction of dependence on live animal and cadavers. The conventional practical testing usually entails an invasive practice, dissection or long time manipulation of living animals, which brings up the question of animal welfare and ethical accountability²⁶. Alternatives to the usage of living animals include digital options like virtual dissections, 3D anatomical models and simulation-based animal-handling exercises that enable the learner to gain similar skills and knowledge without causing harm. The tools can be used to keep the institutions ethical in addition to ensuring that students acquire the competencies required in anatomy pathology and behavioral assessment because they depend on the concept of the 3Rs as Replacement, Reduction, and Refinement²⁷.

Besides decreasing the use of animals, digital assessment also ensures ethical learning practices, as it offers fair and conventional evaluation to all learners. With the traditional testing, it can be subject to human bias, scoring disparities, or disparities in access to cadavers, but through the digital platform, it provides objective, repeatable, and transparent evaluation processes. Programs using AI scoring, computer analysis of images and common simulation tasks minimize variability in the evaluation of students, allowing an assessment of their real skills and knowledge. This does not only help in the fairness of academics but it also supports the ethical values of education in that students will be tested under the same and open conditions²⁸.

But digital assessment in animal-based education presents new ethical issues of academic integrity and student privacy. Remote proctoring, video submission and online simulations are convenient and scalable but tend to be susceptible to malpractices in case of insufficient authentication and monitoring. Certified video submissions, unpermitted collaboration or usage of technical weaknesses can deter the quality of tests. Institutions should consequently adopt a sound ethical edifice such as secure browsers, verification applications, time and date recordings, monitored digital laboratories to be able to examine students in an honest manner whilst upholding their privacy and accountable to the profession²⁹.

Lastly, the ethics aspect is not restrained to fairness during assessments and animal care, but issues pertaining to accessibility and equity as well. Not every student equally has access to high-quality computers, stable internet connection as well as advanced simulation software. The inability to deal with these differences may lead to the occurrence of ethical imbalances which will disadvantage some categories of learners. Institutions should then also employ inclusive practices, including availing access to campus-based digital laboratories, technical assistance, and in making examination that do not impose undue hardship on the students who have limited resources. Beautifully striking the right balance with these aspects of ethics, the digital assessment tools can promote not only human but also fair practices of education in animal-based post-secondary education³⁰.

Table 1: Summary of Studies on Academic Integrity, Digital Assessment, and Educational Technology in Higher Education³¹

Author(s) & Year	Study Focus	Focus Area	Methodology	Key Findings
Reedy et al. (2021)³²	Perceptions of academic integrity during online exams	Academic integrity in emergency remote teaching	Survey of students and academic staff	Students and staff perceived increased risk of misconduct; highlighted challenges in maintaining integrity during online assessments

Sefcik et al. (2020)³³	Effectiveness of academic integrity education programs	Academic integrity education	Literature review and program evaluation	Interactive, reflective, and context-specific programs promoted better understanding and adherence to academic integrity principles
Singun (2025)³⁴	Barriers to digital transformation in higher education	Digital assessment and educational technology	Systematic literature review	Technological limitations, resistance to change, insufficient training, and lack of policies hindered effective implementation of digital tools
Smolansky et al. (2023)³⁵	Impact of generative AI on assessments	AI in higher education assessment	Survey and interviews of educators and students	Mixed perceptions: AI enhanced learning efficiency but raised concerns about fairness, plagiarism, and maintaining rigorous assessment standards
Sotiriadou et al. (2020)³⁶	Role of authentic assessment in academic integrity	Authentic assessment and employability	Literature review and case studies	Real-world task-based assessments reduced misconduct and promoted higher-order thinking, practical skills, and graduate readiness

5. DISCUSSION

Animal-based assessment tools Digital animal-based higher education assessment is effective, valid and ethically appropriate, providing standardized and scalable evaluation and AI-oriented conclusions. Limitations entail the sensory-motor skill evaluation, the access to technology, the academic integrity, and the faculty preparation. Subsequent studies are supposed to establish combined models, enhance proficiency measurement, promote fairness, and establish the long-term results and stability³⁷.

5.1 Interpretation and Analysis of Findings

The review has indicated that digital assessment tools in animal-based higher education, which include virtual dissections, AI-based scoring, digital pathology slides, and simulated-based

exercises, prove to be very effective in assessing the theoretical as well as practical skills. Research proves high construct and contents validity and, in most cases, works well with the traditional practical approaches. Digital tools can offer instant feedback, enable repetition of practice and offer standardized assessment, improving consistency and eliminating human error. In addition, they would facilitate the ethical considerations considering that they would reduce the usage of live animals or cadavers by following the principles of the 3Rs which are Replacement, Reduction and Refinement without affecting the learning outcomes³⁸.

5.2 Implications and Significance

The results are of great implications on curriculum design, assessment policies, and institutional policies. Digital assessments provide a scalable, fair, and ethical resolution especially in resource-constrained or logically problematic situations. The use of AI augments objective and reproducible systems that enable educators to make informed decisions on instruction by giving performance specifics of their instructors. The combination of the tools allows changing educational approaches to competency-based frameworks, which will help the students obtain the necessary learning outcomes without violating the animal welfare principles. Such tools also provide the continuity of learning due to interruptions, including pandemics, or distance learning by distance, which is why their role as an increasingly significant component of higher education should not be underestimated³⁹.

5.3 Identification of Gaps

Although obvious advantages exist, there are still gaps. Online exams are constrained in measuring sensory-motor skills, including animal handling, surgical, and tactile diagnostics, which are important in practical competency. Adoption is limited by technological constraints such as software instability, hardware needs and internet connections problems especially in the rural institutions with limited resources. The problem of academic integrity remains the same because remote proctoring and video-based assessments can be prone to malpractices. Furthermore, there are also faculty training gaps and resistance to digital pedagogies, which impede the successful implementation and that is, professional development and change management programs are needed.

5.4 Future Research Directions

Future study should consequently seek to address these gaps with a view to coming up with hybrid assessment models through which digital tools are combined with restricted and ethically controlled real-life experiences. The assessment of the sensory-motor skills could be improved with the help of innovations in the area of virtual simulation, AI-supported performance evaluation, and immersive learning platforms. The ability to sustain the skills, transfer competence, and cost-efficacy should be compared with traditional methods using longitudinal studies to conduct empirical data that would endorse sustainable adoption. They should also study the methods of enhancing equity and accessibility such that all students

including those who are in resource-deprived environments have access to digital assessment technologies⁴⁰.

6. CONCLUSION

Digital assessment tools are a new disruptive technology in higher education and especially in animal-science programs which can provide scalable, reliable and ethically acceptable alternatives to hands-on evaluations. Online simulations like virtual dissections, computerized scoring tools, computer-generated pathology slides, and exercises via simulation can work to improve theoretical knowledge and practical skills and ensure adherence to the 3Rs model like Replacement, Reduction, and Refinement by use of minimal use of a living animal or cadaver. Such tools offer standardized assessment, real-time assessment, and a chance to repeat and be repetitive, and they minimise the amount of human bias hence advance fair and clear assessment. Nevertheless, there are still difficulties such as insufficient assessment of sensory-motor skills, technological issues, susceptibility to academic dishonesty, faculty training, and differences in accessibility. These obstacles need to be overcome by implementing hybrid assessment systems, educator training, and inclusion policy and a well-founded integrity infrastructure. On the whole, digital assessments are being potentially critical in enhancing ethical, competency-based, and sustainable higher education in animal-based programs, and that achieve high-quality learning and human practices.

REFERENCES

1. Akimov, A., & Malin, M. (2020). When old becomes new: a case study of oral examination as an online assessment tool. *Assessment & Evaluation in Higher Education*, 45(8), 1205-1221.
2. Amzalag, M., Shapira, N., & Dolev, N. (2022). Two sides of the coin: lack of academic integrity in exams during the corona pandemic, students' and lecturers' perceptions. *Journal of Academic Ethics*, 20(2), 243-263.
3. Bashir, H., & Bala, R. (2018). Development and validation of academic dishonesty scale (ADS): Presenting a multidimensional scale. *International journal of instruction*, 11(2), 57-74.
4. Bennett, L., & Abusalem, A. (2024). Building Academic Integrity and Capacity in Digital Assessment in Higher Education. *Athens Journal of Education*, 11(1), 71-94.
5. Butler-Henderson, K., & Crawford, J. (2020). A systematic review of online examinations: A pedagogical innovation for scalable authentication and integrity. *Computers & education*, 159, 104024.
6. Çelik, Ö., & Razi, S. (2023). Facilitators and barriers to creating a culture of academic integrity at secondary schools: an exploratory case study. *International Journal for Educational Integrity*, 19(1), 4.
7. Chavez, J. V., & Lamorinas, D. D. (2023). Reconfiguring Assessment Practices and Strategies in Online Education during the Pandemic. *International Journal of Assessment Tools in Education*, 10(1), 160-174.

8. Comas-Forgas, R., Lancaster, T., Calvo-Sastre, A., & Sureda-Negre, J. (2021). Exam cheating and academic integrity breaches during the COVID-19 pandemic: An analysis of internet search activity in Spain. *Heliyon*, 7(10).
9. Cotton, D. R., Cotton, P. A., & Shipway, J. R. (2024). Chatting and cheating: Ensuring academic integrity in the era of ChatGPT. *Innovations in education and teaching international*, 61(2), 228-239.
10. Currie, G. M. (2023, September). Academic integrity and artificial intelligence: is ChatGPT hype, hero or heresy?. In *Seminars in Nuclear medicine* (Vol. 53, No. 5, pp. 719-730). WB Saunders.
11. Dawson, P. (2020). Defending assessment security in a digital world: Preventing e-cheating and supporting academic integrity in higher education. Routledge.
12. Garg, M., & Goel, A. (2022). A systematic literature review on online assessment security: Current challenges and integrity strategies. *Computers & Security*, 113, 102544.
13. Gkrimpizi, T., Peristeras, V., & Magnisalis, I. (2023). Classification of barriers to digital transformation in higher education institutions: Systematic literature review. *Education Sciences*, 13(7), 746.
14. Grájeda, A., Burgos, J., Córdova, P., & Sanjinés, A. (2024). Assessing student-perceived impact of using artificial intelligence tools: Construction of a synthetic index of application in higher education. *Cogent Education*, 11(1), 2287917.
15. Guangul, F. M., Suhail, A. H., Khalit, M. I., & Khidhir, B. A. (2020). Challenges of remote assessment in higher education in the context of COVID-19: a case study of Middle East College. *Educational assessment, evaluation and accountability*, 32(4), 519-535.
16. Guerrero-Dib, J. G., Portales, L., & Heredia-Escorza, Y. (2020). Impact of academic integrity on workplace ethical behaviour. *International Journal for Educational Integrity*, 16(1), 2.
17. Holden, O. L., Norris, M. E., & Kuhlmeier, V. A. (2021, July). Academic integrity in online assessment: A research review. In *Frontiers in education* (Vol. 6, p. 639814). Frontiers Media SA.
18. Ifelegebegu, A. O. (2023). Rethinking online assessment strategies: Authenticity versus AI chatbot intervention. *Journal of Applied Learning & Teaching*, 6(2), 385-392.
19. Imran, M., & Almusharraf, N. (2023). Analyzing the role of ChatGPT as a writing assistant at higher education level: A systematic review of the literature. *Contemporary Educational Technology*, 15(4), ep464.
20. Janke, S., Rudert, S. C., Petersen, Ä., Fritz, T. M., & Daumiller, M. (2021). Cheating in the wake of COVID-19: How dangerous is ad-hoc online testing for academic integrity?. *Computers and Education Open*, 2, 100055.
21. Jarrah, A. M., Wardat, Y., & Fidalgo, P. (2023). Using ChatGPT in academic writing is (not) a form of plagiarism: What does the literature say. *Online Journal of Communication and Media Technologies*, 13(4), e202346.

22. Judi, H. M. (2022). Integrity and security of digital assessment: Experiences in online learning. *Global Business and Management Research*, 14(1), 97-107.
23. Malufu, K., Malufu, S., & Dlamini, C. (2024). Academic integrity in digital learning. In *Teaching Information Systems* (pp. 193-218). Edward Elgar Publishing.
24. Mate, K., & Weidenhofer, J. (2022). Considerations and strategies for effective online assessment with a focus on the biomedical sciences. *Faseb Bioadvances*, 4(1), 9-21.
25. Michel-Villarreal, R., Vilalta-Perdomo, E., Salinas-Navarro, D. E., Thierry-Aguilera, R., & Gerardou, F. S. (2023). Challenges and opportunities of generative AI for higher education as explained by ChatGPT. *Education sciences*, 13(9), 856.
26. Mishra, D. R., & Varshney, D. (2024). Academic integrity in higher education: Faculty perceptions, strategies, and digital challenges in the digital age. *International Journal of All Research Education and Scientific Methods (IJARESM)*, ISSN, 2455-6211.
27. Muchemwa, S. (2023). Integrity of university online assessment: Towards developing a function model. *Eureka: Journal of Educational Research*, 1(2), 67-73.
28. Ngo, T. T. A. (2023). The perception by university students of the use of ChatGPT in education. *International Journal of Emerging Technologies in Learning (Online)*, 18(17), 4.
29. Nykyporets, S. S. (2023). Digital technologies and academic integrity: exploring challenges and opportunities in the contemporary educational landscape. *Матеріали науково-практичного семінару «Академічна доброчесність: практичний досвід»*. Вип. 4: 75-90.
30. Pordanjani, Z. A., & Salehi, K. (2025). Limitations of Electronic Assessment: A Systematic Review. *Quanta Research*, 3(1), 111-130.
31. Rasul, T., Nair, S., Kalendra, D., Robin, M., de Oliveira Santini, F., Ladeira, W., ... & Heathcote, L. (2023). The role of ChatGPT in higher education: Benefits, challenges, and future research directions. *Journal of Applied Learning & Teaching*, 6(1), 41-56.
32. Reedy, A., Pfitzner, D., Rook, L., & Ellis, L. (2021). Responding to the COVID-19 emergency: student and academic staff perceptions of academic integrity in the transition to online exams at three Australian universities. *International Journal for Educational Integrity*, 17(1), 9.
33. Sefcik, L., Striepe, M., & Yorke, J. (2020). Mapping the landscape of academic integrity education programs: what approaches are effective?. *Assessment & evaluation in higher education*.
34. Singun, A. J. (2025). Unveiling the barriers to digital transformation in higher education institutions: a systematic literature review. *Discover Education*, 4(1), 37.
35. Smolansky, A., Cram, A., Raduescu, C., Zeivots, S., Huber, E., & Kizilcec, R. F. (2023, July). Educator and student perspectives on the impact of generative AI on assessments in higher education. In *Proceedings of the tenth ACM conference on Learning@ Scale* (pp. 378-382).

36. Sotiriadou, P., Logan, D., Daly, A., & Guest, R. (2020). The role of authentic assessment to preserve academic integrity and promote skill development and employability. *Studies in Higher Education*, 45(11), 2132-2148.
37. Sullivan, M., Kelly, A., & McLaughlan, P. (2023). ChatGPT in higher education: Considerations for academic integrity and student learning. *Journal of Applied Learning & Teaching*, 6(1), 31-40.
38. Tsigaros, T., & Fesakis, G. (2020, December). E-assessment and academic integrity: A literature review. In *International Conference on Technology and Innovation in Learning, Teaching and Education* (pp. 313-319). Cham: Springer International Publishing.
39. Turnbull, D., Chugh, R., & Luck, J. (2021). Transitioning to E-Learning during the COVID-19 pandemic: How have Higher Education Institutions responded to the challenge?. *Education and Information Technologies*, 26(5), 6401-6419.
40. Yusuf, A., Pervin, N., & Román-González, M. (2024). Generative AI and the future of higher education: a threat to academic integrity or reformation? Evidence from multicultural perspectives. *International Journal of Educational Technology in Higher Education*, 21(1), 21.